Publications

37. Ebqa'ai, M.; Tamimi, M. F.; Kassick A. J.; Averick, S. E.; Nelson T. L. One-Pot Phenolic-Initiated Mechanochemical Synthesis of Poly(lactic acid) Nanoparticles: Application of the Artificial Neural Network Algorithm to perform Sensitivity Assessment Models. Macromolecules 2022, 55, 9740–9750.

36. Nirmani, L. P. T.; Pary, F. F.; Nelson T. L. Mechanochemical Suzuki Polymerization for Synthesis of Polyfluorenes. Green Chem. Lett. Rev. 2022 15, 863-86.

35. Adhikari, S.; Essandoh, M. A.; Starr, W. C.; Sah, P.; La Force, C. N.; Eleshy, R. G.; Lutter, E. I. Nelson, T. L. Eumelanin-inspired antimicrobial with biocidal activity against Methicillin Resistant Staphylococcus aureus. ACS Appl. Bio Mater. 2022, 5, 545–551.

34. Adhikari, S.; Essandoh, M. A.; Starr, W. C.; Sah, P.; La Force, C. N.; Eleshy, R. G.; Lutter, E. I. Nelson, T. L. Eumelanin-inspired antimicrobial with biocidal activity against Methicillin Resistant Staphylococcus aureus ACS Applied Bio Materials. ACS Appl. Bio Mater. 2022 5, 545–551.

33. Khambhati, D. K.; Nelson T. L. Semiconductive Materials for Organic Electronics and Bioelectronics from Renewable Resources, In Sustainable Strategies in Organic Electronics. 2021, ISBN 9780128231470

32. Richter, B.; Mace, Z.; Hays, M. E.; Adhikari, S.; Pham, H. Q.; Le, T. Q.; Sclabassi, R. J.; Kolber, B. Cheng, B.; Whiting, D. M.; Averick, S.; Nelson, T. L. Development and Characterization of a Novel Conductive Sensing Fibers for in vivo Nerve Stimulation. Sensors 2021, 21, 7581.

31. Lamichhane, P,; Dhakal, D.; Chaudhari, S.; Jayalath, I.; Nelson, T. L.; Park, C.; Yousefpour, K.; Blum, F.; Vaidyanathan, R.. Polyaniline Doped Graphene Thin Film to Enhance the Electrical Conductivity in CFRP Composites for Lightning Strike Mitigation. J. Compos. Mater. 2021, 55, 4445-4455.

30. Kassick, A. J.; Tomycz, N. D.; Wu, M.; Luengas, D.; Ebqa’ai, M.; Nirmani, L. P. T.; Nelson, T. L.; Pravetoni, M.; Raleigh M. D.; Allen, H. N.; Yerneni, S. S.; Pary, F.; Kovaliov, M.; Cooper Cheng, C.; Marco Pravetoni, M.; Averick, S. Covalently-Loaded Naloxone Nanoparticles as a Long-Acting Medical Countermeasure to Opioid Poisoning. ACS Pharmacol. Transl. Sci. 2021, 4,1654–1664.

29. Minus, M.; Moor, S.; Pary, F. F.; Nirmani, L. P. T.; Chwatko, M.; Okeke, B.; Nelson, T. L.; Lynd, N.; Anslyn, E. Benchtop Biaryl Coupling using Pd/Cu Co-Catalysis. Application to the Synthesis of Conjugated Polymers. Org. Lett. 2021, 23, 2873–2877.

28. Ranathunge, T. A.; Karunathilaka, D.; Nirmani, L. P. T.; Nelson T. L.; Watkins, D. L. Benzodithiophene-S,S-tetraoxide (BDTT) as an Acceptor Towards Donor-Acceptor (D-A) Type Semiconducting Electropolymers. Chem. Electro. Chem. 2021, 8, 1141–1148.

27. Pary, F. F.; Tirumalab, R. T. A.; Andiappan, M.; Nelson T. L. Copper (I) Oxide Nanoparticle-Mediated C-C Couplings for Synthesis of Polyphenylenediethynylenes: Evidence for Homogeneous Catalytic Pathway. Catal. Sci. Technol. 2021, 11, 2414-2421.

26. Hippola, C., Danilovic, D., Bhattacharjee, U., Perez‐Bolivar, C., Sachinthani, K. A. N., Nelson, T. L., Anzenbacher, P., Petrich, J. W., Shinar, R., Shinar, J., Bright Deep Blue TADF OLEDs: The Role of Triphenylphosphine Oxide in NPB/TPBi:PPh3O Exciplex Emission. Adv. Optical Mater. 2020, 8, 0191282.

25. Urbina-Blanco, C. A.; Jilani, S. Z.; Speight, I. R; Bojdys, M. J.; Friščić, T.; Stoddart, J. F. Nelson, T. L.; Mack, J.; Robinson R. A. S. et.al A Diverse View Of Science To Catalyse Change. Nat. Chem. 2020, 12, 773–776.

24. Adhikari S.; Ren, Y. X.; Stefan M. C.; Nelson T. L. Facile C–H Iodination of Electron Deficient Benzodithiophene-S,S-tetraoxide for the Development of N-Type Polymers. Polym. Chem. 2020, 11, 7421–7428.

23. Pary, F. F.; Nelson, L. A.; Nelson. T. L. Drop the Toxins! Bioinspired Hair Dye Offers a Safer Alternative. ACS Cent. Sci. 2020, 6, 2133−2135.

22. Kassick, A. J.; Allen, H. N.; Yerneni, S. S.; Pary, F.; Kovaliov, M.; Cooper Cheng, C.; Marco Pravetoni, M.; Tomycz, N. D.; Whiting, D. M.; Nelson, T. L.; Feasel, M.; Campbell, P. G.; Kolber, B.; and Averick, S. Covalent Poly(lactic acid) Nanoparticles for the Sustained Delivery of Naloxone. ACS Appl. Bio Mater. 2019, 2, 3418−3428.

21. Dilli R. Dhakal, D. R.; Lamichhane, P.; Mishra, K.; Nelson, T. L.; Vaidyanathan, R. K. Influence of Graphene Reinforcement in Conductive Polymer: Synthesis and Characterization. Polym. Adv. Technol. 2019, 30, 2172–2182.

20. Adhikari, S.; Richter, B.; Mace, Z.; Sclabassi, R. J.; Cheng, B.; Whiting, D. M.; Averick, S.; Nelson, T. L. Novel Organic Conductive Fibers as Non-metallic Electrodes and Neural Interconnects. Ind. Eng. Chem. Res. 2018, 54, 7866-7871.

19. Ajitha, M. J.; Pary, F.; Nelson, T. L.; Musaev, D. G. Unveiling the Role of Base and Additive in the Ullmann-type of Arene-Aryl C-C Coupling Reaction. ACS Catal. 2018, 8, 4829–4837.

18. Sachinthani, K. A. N.; Kaneza, N.; Kaudal, R.; Manna, E.; Eastman, M. A.; Sedai, B.; Pan, S.; Shinar, J.; Shinar, R.; Nelson T. L. Synthesis, Characterization, and Electrogenerated Chemiluminescence of Deep Blue Emitting Eumelanin-Inspired Poly(indoylenearylene)s for Polymer Light Emitting Diodes. J. Polym. Sci. A Polym. Chem. 2018, 56, 125-131.

17. Khambhati, D. P.; Sachinthani, K. A. N.; Rheingold, A. L.; Nelson, T. L. Regioselective Copper-Catalyzed Direct Arylation of Benzodithiophene-S,S-Tetraoxide. Chem. Commun. 2017, 53, 5107-5109.

16. Adhikari, S.; Hopson, R. A.; Sedai, B. R.;McFarland, F. M.; Guo, S.; Nelson, T. L. Synthesis and Characterization of Eumelanin-Inspired Poly(indolyenearylenevinylene)s and Poly(indolyenearyleneethynylene)s. J. Polym. Sci. A Polym. Chem. 2017, 55, 457-463.

15. Selvaraju, S.; Adhikari, S.; Hopson, R. A.; Dai, S.; Rheingold, A. L.; Borunda, M. F.; Nelson, T. L. Effects of structural variations on the optical and electronic properties of eumelanin-inspired small molecules. J. Mater. Chem. C. 2016, 4, 3995 - 3999

14. Nelson, T. L. System and Method for Production of Artificial Eumelanin. International Patent Application No. PCT/US2015/021216. Reference: O3300-47216 (15-020 WO).

13. Selvaraju, S.; Sachinthani, K. A. N.; Hopson,R. A.; McFarland, F. M.; Guo, S.; Rheingold, A. L.; Nelson, T. L. Eumelanin-inspired core derived from vanillin: A new building block for organic semiconductors. Chem. Commun. 2015, 51, 2957–2959

12. Kobilka, B. M.; Hale, B. J.; Ewana, M. D.; Dubrovskiy, A. V.; Nelson, T. L.; Duzhkoc, V.; Jeffries-EL, M. Influence of heteroatoms on photovoltaic performance of donor-acceptor copolymers based on 2,6-di(thiophen-2-yl)benzo[1,2-b:4,5-b’]difurans and diketopyrrolopyrrole. Polym. Chem. 2013, 4, 5329-5336.

11. Vercelli, B.; Zotti, G.; Berlin, A.; Pasini, M.; Botta, C., Gerbasi, R.; Nelson, T. L.; McCullough, R. D. Oligo(poly)Thiophene Sensitization of CdSe-Nanocrystal and TiO2 Polycrystalline Electrodes: A Photoelectrochemical Investigation J. Phys. Chem. C. 2012, 116, 2033–2039.

10. Bhuwalka, A.; Mike, J. F.; He, M.; Intemann, J. J.; Nelson, T.; Ewan, M. D.; Roggers, R. A.; Lin, Z.; Jeffries-EL, M. Quaterthiophene-Benzobisazole Copolymers for Photovoltaic Cells: Effect of Heteroatom Placement and Substitution on the Optical and Electronic Properties. Macromolecules 2011, 44, 9611–9617.

9. Singh, K. A.; Nelson, T. L.; Belot, J. A.; Dhumal, N. R.; Kowalewski, T.; McCullough, R. D.; Nachimuthu, P.; Thevuthasan, S.; Porter, L. M. Effect of Self-Assembled Monolayers on Charge Injection and Transport in Poly(3-hexylthiophene) based Field-Effect Transistors at Different Channel Length Scales. ACS Appl. Mater. Interfaces 2011, 3, 2973–2978.

8. Nelson, T. L.; Young, T. M.; Liu, J.; Mishra, S. P.; Belot, J. A.; Balliet, C. L. Javier, A. E.; Kowalewski, T.; McCullough, R. D. Transistor Paint: High Mobilities in Small Bandgap Polymer Semiconductor Based on the Strong Acceptor, Diketopyrrolopyrrole and Strong Donor, Dithienopyrrole. Adv. Mater. 2010, 22, 4617–4621.

7.   Zotti, G.; Vercelli, B.; Berlin, A.; Pasini, M.; Nelson, T. L.; McCullough, R. D.; Virgili, T. Self-Assembled Structures of Semiconductor Nanocrystals and Polymers for Photovoltaics. 2. Multilayers of CdSe Nanocrystals and Oligothiophene-Based Molecules. Optical, Electrochemical, Photoelectrochemical and Photoconductive Properties. Chem. Mater. 2010, 22, 1521–1532.

6.   Maynor, M. S.; Deason, T. K.; Nelson, T. L.; Lavigne, J. J. MultiDimensional Response Analysis Towards the Detection and Identification of Soft Divalent Metal Ions. Supramol. Chem. 2009, 21, 310-315.

5.   Nelson, T. L.; Tran, I.; Ingallinera, T. G.; Maynor, M. S.; Lavigne, J. J. Multi-Layered Analyses Using Directed Partitioning to Identify and Discriminate between Biogenic Amines. Analyst 2007, 132, 1024-1030.

4.   Maynor, M. S.; Nelson, T. L.; O’Sullivan, C.; Lavigne, J. J. A Food Freshness Sensor Using the Multistate Response from Analyte-Induced Aggregation of a Cross-Reactive Poly(thiophene). Org. Lett. 2007, 9, 3217-3220.

3.   Bruckman, M. A.; Niu, Z.; Li, S.; Lee, L. A.; Varazo, K.; Nelson, T. L.; Lavigne, J. J.; Wang, Q. Development of Nanobiocomposite Fibers by Controlled-Assembly of Rod-Like Tobacco Mosaic Virus. Nanobiotechnology 2007, 31, 31-39.

2.   Nelson, T. L.; O’Sullivan, C.; Greene, N. T.; Maynor, M. S.: Lavigne, J. J. Cross-Reactive Conjugated Polymers: Analyte Specific Aggregative Response for Structurally Similar Diamines. J. Am. Chem. Soc. 2006, 128, 5640-5641.

1.   Clabo, D. A. Jr.; Dickson, H. D.; Nelson, T. L. Computational Investigation of Chalcogen-Substituted Carboxylic Acids RC(=O)XH and RC(=X)OH and their Dimers [RC(=O)XH]2 and [RC(=X)OH]2 (X= S, Se, Te). J. Mol. Model. 2000, 6, 341-348.

Research

Green Methods for the Synthesis of Organic Materials
Carbon-carbon cross-coupling reaction technology has revolutionized the synthesis of both pharmaceuticals and materials that are optically and electronically active. However, robust green methods to facilitate carbon-carbon cross-coupling of aromatic arenes and heteroarenes remain scarce. The widely used traditional carbon-carbon cross-coupling reactions, like Stille, require that the monomers for coupling be functionalized using stoichiometric amounts of hazardous and toxic reagents. The objective of the research is to devise green and creative strategies to synthesize organic materials in a manner that reduces cost, waste, and environmental impact and improves safety.

PXL 20221007 173701931.PORTRAIT


Eumelanin-Inspired Materials as Bioinspired Organic Semiconductors
Biomaterials that interface living tissue has become a necessity in clinics to improve diagnosis and treatments. These advanced materials have been used in tissue engineering, imaging, and drug delivery. Still, there is a critical need for developing advanced biomaterials solutions for the biotic/abiotic interface that are biocompatibility and biodegradable. In terms of chemical and functional diversity, nature is a great source of new building blocks for bioinspired materials. One such inspiration is the biopolymer, Melanin, which is a class of naturally occurring pigments found in the hair, eyes, skin, and brain of mammals and acts as a natural photoprotector against the harmful effects of UV radiation. Eumelanin is the black-brown variety of melanin and exists as a heterogeneous network, formed by the oxidative polymerization of two monomers 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA). The objective of this research is to design and synthesize Eumelanin-inspired organic semiconductors for optical sensors, biosensors, and biomedical and energy applications.

Welcome to Nelson Research Lab

 ST27 McGillU1 image iStock Garsya 1024x576

Professor Nelson’s research interests are organic materials, C-H functionalization, green chemistry, Melanins, and organic semiconductors. His research focuses on the design and synthesis of organic materials via green methods such as green solvent usage, C-H functionalization, and solvent-free techniques like high-speed ball-milled reactions. His research program covers the design and synthesis of organic semiconductors, polymer chemistry, supramolecular materials, green chemistry, and the development of bioinspired materials, organic electronics, biosensors, and bioelectronics. His current research interest emphasizes the development of new bioinspired organic semiconductors based on the natural pigment, Eumelanin.

bio picture 2